QA9.58.L57

ALGORITHM CREATION FROM THE VIEWPOINTS
OF BOTH THE MATHEMATICIAN AND THE COMPUTER SCIENTIST

A Thesis
Presented to the Graduate Faculty
of Western Connecticut State College

by

Louis Andrew Lisko Jr.

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts

7’%8 20y /Of 78

Adv1sot7

Graduite‘gtudies



LIBSA
QA9.58.L57



QA9.58.L57

CHAPTER I
INTRODUCTION

If a mathematician were asked to describe briefly what
he considered the primary duty of his profession, he would
‘address himself to those mathematical objects with which he
deals--objects such as integers, continuous functions, or
projections. He would surely admit that one of his major
efforts involves establishing the validity, or proving the
falseness, of various theorems concerning these mathematical
objects. Another task he probably would mention is problem-
solving through the formulating of algorithms or effective
computational procedures.

In part, the mathematician is attempting to provide a
means of obtaining answers to entire classes of problems by
literally listing instructions which serve as mechanical
procedures for solving problems. When executing these instruc-
tions set forth by the‘mathematician, there is no need for
innovative thought. A machine can be constructed to carry
them out, or a digital computer can execute them by means of
translating the instructions into a computer program.

Suppose a problem were proposed as follows: Find the
product of x and y, where x and y are members of the set of
Real numbers. Any textbook on elementary arithmetic will give

1


LIBSA
QA9.58.L57



QA9.58.L57

2

instructions that can be used. The proceduré found is mechani-
cal; it can be executed by someone who is merely following
elementary steps or by someone operating an elementary computing
device. Since 1975 an entire new electronics market has opened
with the introduction of inexpensive electronic calculators
which solve this and similar problems. Most problems are not
as straightforward in solution as this, however. The majority
of problems to be solved on computers are much more intricate.
One successful approach to finding solutions for these is to
separate them into a number of more simple problems. Then,
assuming there is an algorithm to solve each of these sub-
problems, an algorithm is sought to solve the original problem.
In other words, a solution to a complex problem has been
accomplished by obtaining solutions to each of its elementary
sub-problems.

The computer scientist deals with assignments in a manner
very much like those described above. He utilizes computers,
and studies areas of application for these computing devices
and how to actually produce solutions for problems on them.
This paper is concerned with the algorithmic solutions to
problems facing both computer scientists and mathematicians.
The picture of computer science presented in this paper is not
intended to imply this field is narrow in scope. The realm of
computer science is far-reaching, and encompasses a vast number
of non-mathematical applications, such as industrial process
control, computer aided instruction, cybernetic theory, and

message switching.


LIBSA
QA9.58.L57



QA9.58.L57

3

Whether speaking of a mathematical application or a
message switching application, or planning the solution of a
simple or complex problem, one thing is certain--a computer
program must be developed in order to execute it on a computer.
There are many objectives computer programming serves. Most
basically, it is the bridge between man, whose goal is the
construction of compound objects from simpler elements by
combining elements according to the rules of some "algebra”,
‘and the computer. Just as the earlier objective in a solution
4o a complex problem was to solve each sub-problem, it can be
said that programming is the discovery of methods for combining
elements into compound objects representing useful processes.
(13, p. 29) This objective is clear when considering the computer
language compiler which translates the original human program
statements (elementary objects) into the machine executable
code (useful processes). Conversely, programming also serves
to find "hidden algebras” in terms of which compound objects
representing useful processes may be built. That is, programming
is simplification, and, like mathematics, is a search for lucky
simplifications. It is worth emphasizing that the discovery
of those simplifications is the essential goal of experimental,
as distinct from applied, programming. (13, p. 29)

A programmer might then briefly state his task as that
of making a defined algorithm suitable for processing on the
computer. Yet a mathematician might say, and rightly sb, that
he has already laid out the same algorithm in terms which are

very often much more concise, even though his precision in the


LIBSA
QA9.58.L57



QA9.58.L57

statement might vary considerably from a colleague's. It
appears then that mathematics, although being more polished or
refined in stating algorithms, lacks the exactness necessary
for computer programming. Programming makes the specified
algorithm as effective or functional as possible, while mathe-
matics allows more leeway, and thus a lesser degree of
optimization. If programming applied these same tolerances,
one might be led to believe that computers with unlimited
resources would be necessary in order to execute such programs.
However, the necessity for such careful coding is often cited
as the main obstacle to the development of applications on the
computer. Mathematicians deal on the one hand with searches
of very large sets--perhaps even infinite in scope; but
programmers must be concerned with devising equivalent procedures
that reduce the margin of choices. The conflict between mathe-
matics and computer science is apparent. After having compared
some aspects of the two, it may seem that computer programming
is difficult. The fact is, it is not difficult, but rather,
programming requires a high degree of discipline in its users.
In the chapters that follow, algorithms will be considered
from the conceptual stage (where the mathematician desires to
create a valid statement of instructions), to the implementation
stage (where the computer scientist wishes to take the mathe-
matician's result and translate it into a form that can be
"understood" by a computer). A look at the non-computational
area of theorem proving will be taken; here, the emphasis

will be on the necessary aspects needed to create the algorithm,


LIBSA
QA9.58.L57



QA9.58.L57

and also the features embodied within the field of recursive
function theory. This will lead to a discussion of the
languages that offer the mathematician a direct tool in which
to create an algorithm, and that afford the computer scientist
a greater flexibility so he can communicate with mathematicians
who wish to use the computer as an expedient discovery tool as

well as a problem solver, and not as an end in itself.


LIBSA
QA9.58.L57





